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Abstract
A numerically implementable multi-scale many-body approach to strongly correlated electron
systems is introduced. An extension to quantum cluster methods, it approximates correlations
on any given length-scale commensurate with the strength of the correlations on the respective
scale. Short length-scales are treated explicitly, long ones are addressed at a dynamical
mean-field level and intermediate length-regime correlations are assumed to be weak and are
approximated diagrammatically. To illustrate and test this method, we apply it to the
one-dimensional Hubbard model. The resulting multi-scale self-energy provides a very good
quantitative agreement with substantially more numerically expensive, explicit quantum Monte
Carlo calculations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Strongly correlated electron systems are characterized by a
manifold of complex, competing phenomena, which emerge
in the thermodynamic limit. The underlying mechanisms
involve correlations on all length-scales. Currently no single
feasible numerical method exists to accurately address these
correlations at all lengths. Both finite size and mean-field
calculations alike are faced with these limitations. However,
interest in areas such as quantum phase transitions and
magnetically driven superconductivity point to the need for
numerical schemes that accurately bridge short and long
length-scales.

Quantum cluster techniques [1], constitute a good starting
point for addressing the entire range of correlations by dividing
the problem into two length regimes; explicitly solving for
short ranged correlations and approximately for the remaining
longer length-scales. One such method, the dynamical cluster
approximation (DCA) [2], maps the lattice problem onto
an embedded cluster problem. In so doing, short ranged
correlations within a given cluster are treated accurately while
the remaining longer ranged correlations are approximated on
a dynamical mean-field level. However, the extent of length-
scales which can thus be accurately addressed beyond the

mean-field level is severely limited by the numerical expense
involved.

This limitation results in an inadequate treatment of
medium ranged correlations which are outside the scope of
explicit calculations. We introduce a multi-scale many-body
(MSMB) approach which addresses each length-scale using
approximations adequate for the strength of the correlations
on the respective scale. The strongest, local and short ranged
correlations are well accounted for in traditional, numerically
exact implementations of the DCA. Correlations, except for
in the vicinity of phase transitions, fall off rapidly with
distance and are hence considered weaker in the intermediate
length-regime. However, these correlations remain significant
and will hence be approximated diagrammatically. Only the
remaining third regime of the longest length-scale will be
treated at the dynamical mean-field level.

The perturbative inclusion of correlations on an interme-
diate length-scale within a multi-scale approach has previously
been explored by Hague et al [3]. Contributions to the single-
particle self-energy on various scales were linked in a hybrid
approach. However, the inherent perturbative nature of the
approach limited it to high temperatures and/or weak cou-
pling strengths. In this work we present a non-perturbative
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two-particle diagrammatic approach to the intermediate length-
regime.

To illustrate and test this scheme, this MSMB is applied
to the one-dimensional Hubbard model [4]. While a formally
simple model, the Hubbard model contains much of the
underlying physics of correlated electron systems. It is
therefore an ideal benchmark for the method. We show that
the MSMB approach yields results in very good quantitative
agreement with explicit large cluster calculations.

Before we proceed to provide detailed results in section 5
we first establish the theoretical basis for the method.
A subsequent outlook on further developments in MSMB
techniques is provided in section 6, concluding with a brief
summary.

2. Formalism

For simplicity, we will use the one-dimensional Hubbard
model to illustrate the MSMB formalism. This low dimension
is also the most difficult regime for quantum cluster approaches
like the DCA. The Hubbard Hamiltonian is given by

H = −
∑

〈i j〉
t (c†

iσ c jσ + H.c.) + ε
∑

iσ

niσ

+ U
∑

i

(ni↑ − 1/2)(ni↓ − 1/2) (1)

with c†
iσ creating an electron of spin σ at site i and local density

niσ = c†
iσ ciσ . The first part, the kinetic term, allows hopping

between adjacent lattice sites with transfer integral t . The
second term is the on-site Coulomb repulsion making a doubly
occupied lattice site unfavorable. Throughout the remainder of
this paper we choose the bare bandwidth W = 4t as the unit of
energy by setting t = 0.25 and work at fixed filling n = 0.75.

2.1. DCA

The DCA is a systematic quantum cluster theory that maps
the lattice problem onto a self-consistently embedded cluster
problem. It is an extension of the dynamical mean-field
theory (DMFT) [5, 6] which systematically incorporates non-
local correlations. In the limit when the cluster size is one
(i.e. a single site), it recovers the purely local DMFT solution,
systematically incorporates non-local corrections as the cluster
size increases, and finally becomes exact when the cluster size
equals the size of the lattice.

The respective approximations for the DMFT and DCA
may be derived by approximating the Laue function which
describes momentum conservation at the vertices of the
irreducible diagrams:

�(k1,k2,k3,k4) ≡
∑

r

eir(k1+k2−k3−k4) (2)

�exact = Nδk1+k2,k3+k4 . (3)

In the DMFT, the Laue function is approximated with
�DMFT = 1 for all combinations of k1, k2, k3 and k4. In doing
so, all electron propagators in the self-energy diagrams may be
averaged over the first Brillouin zone (BZ), thus relinquishing

First  BZ

First  BZ

k

kK

x

Figure 1. In the DMFA all electron propagators are averaged over
the entire BZ, effectively mapping the lattice onto a single point
(top). In the DCA, we break the BZ into several sub-cells which are
now in turn averaged over mapping the lattice onto a finite sized
cluster (bottom).

any momentum dependence of the self-energy. Hence, the
DMFT lattice Green’s function contains local correlations of
the system but is unable to capture non-local correlations.
The DCA sets out to systematically include these non-local
contributions. This is accomplished by partially restoring
momentum conservation of the irreducible vertices. We divide
the BZ into Nc identical discrete sub-cells as illustrated in
figure 1. The center of each cell is labeled by K , and the
surrounding points by k̃, so that any arbitrary k = K + k̃.
In the DCA, this partial momentum conservation is expressed
by the Laue function:

�DCA = NcδK1+K2,K3+K4 . (4)

Therefore, all propagators may freely be summed over intra-
cell momenta k̃, yielding the coarse grained Green’s function

Ḡ(K , iωn) = Nc

N

∑

− �k
2 <k̃� �k

2

G(K + k̃, iωn). (5)

In so doing, only momentum conservation of magnitude �k <

(2π/Nc) is neglected, while larger inter-cell transfers are
preserved. The resulting self-energy diagrams are now those
of a finite cluster of size Nc where each lattice propagator has
been replaced by its coarse grained analog, and the remaining
cluster problem is defined by Ḡ(K , iωn). We can write for the
DCA lattice Green’s function

G(K + k̃, iωn) = 1

iωn + μ − ε(K + k̃) − �(M(K + k̃), iωn)
(6)

where M(k) is a function which maps momentum k residing
in a certain sub-cell of the BZ to its cluster momentum K and
the lattice self-energy is approximated by that of the cluster
problem.

The remaining embedded cluster problem must be solved
with a self-consistency requirement that the Green’s function
calculated on the cluster Gc(K , iωn) = Ḡ(K , iωn). Figure 2
depicts the corresponding DCA algorithm: starting with an
initial guess for the self-energy, we construct the coarse grained
Green’s function Ḡ from the corresponding lattice G (see
equation (5)). In the next step, we utilize one of the many
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QMC

G G

c

Figure 2. Self-consistency loop for the DCA.

available cluster solvers to determine the cluster self-energy.
This is the numerically most involved step and a variety of
numerical techniques may be applied. At this point, we use
the new estimate for the self-energy to re-initialize the self-
consistency loop. It is important to notice that in this procedure
only the irreducible lattice quantities are approximated by their
cluster equivalent, i.e. the self-energy.

The DCA has been successfully implemented with a
variety of cluster solvers, of which some are exact but limited
in cluster size while others are applicable up to larger length-
scales but involve varying degrees of approximation. Some of
the cluster solvers which have been used in conjunction with
the DCA include the non-crossing approximation (NCA) [7],
the fluctuation exchange approximation (FLEX) [3, 8] and the
quantum Monte Carlo (QMC) [2] method. While NCA and
FLEX involve various levels of approximations, QMC is of
special interest since it provides an essentially numerically
exact solution to the problem. Although the QMC constitutes
a precise cluster solver, it becomes prohibitively expensive for
large clusters. The range of applicability of exact calculations
is thus restricted to relatively short length-scales. However,
various properties of strongly correlated systems are not
accounted for (e.g. the Mermin–Wagner theorem [9]) due to
the absence of long ranged fluctuations in these solutions.

2.2. Multi-scale method

The inability of a single solver within the DCA to numerically
address long ranged correlations explicitly motivates a MSMB
approach where the problem is divided further, incorporating a
third, intermediate length-regime. In this approach, the lattice
problem is mapped onto two clusters of different size, each of
which contributes correlations of length-scales up to the linear
extent of their respective cluster size. The respective cluster
problems are addressed using approximations adequate with
the strength of the correlations on the respective scale. We
choose a small DCA cluster of size N (1)

c to be solved using
the QMC, thus explicitly accounting for the shortest ranged
correlations in the system. Next, we invoke a second, larger
cluster of size N (2)

c to address the intermediate length-regime.
Except in the vicinity of phase transitions, correlations on these
longer length-scales are weaker and the corresponding self-
energy is approximated diagrammatically.

We build a suitable approximation by considering the
single-particle self-energy (the Hartree term is not explicitly
shown) written in terms of the reducible vertex F in both
the particle–hole and particle–particle channel as depicted in
figure 3. F in turn is related to the irreducible vertex 	 via the
Bethe–Salpeter equation (see figure 4).

Figure 3. Diagrams relating the self-energy to the reducible
two-particle longitudinal spin and charge (top) and transverse spin
(middle) vertices. A similar relation is obtained for the
particle–particle channel (bottom).

F

Figure 4. Bethe–Salpeter equation relating the reducible two-particle
vertex F to the irreducible vertex function 	.

F(k, k ′, q; iωn, iω′
n, iν) = 	(k, k ′, q; iωn, iω′

n, iν)

+ 	(k, k ′′, q; iωn, iω′′
n, iν)χ0(k ′′, q; iωn, iν)

× F(k ′′, k ′, q; iω′′
n, iω′

n, iν). (7)

In perturbation theory, the approximations to the self-
energy are often made at the level of the irreducible vertex
function. In the simple approximation 	 = U , the resulting
self-energy diagrams in figure 3 are those of the FLEX.
The resulting method provides qualitatively correct long
range properties, but short ranged correlations are addressed
inadequately, e.g. local moment formation.

Failure of the FLEX, and similar perturbative approaches
based on the irreducible vertex, occurs in the stronger coupling
regime. This is a result of neglecting higher order correction
terms which renormalize the vertex. In a non-perturbative
approach, Vilk et al in [10] considered a renormalized static
vertex to address this problem.

In the MSMB method, however, we introduce the
following non-perturbative approximation for the intermediate
length-regime: the large cluster irreducible two-particle vertex
is approximated by the small cluster irreducible vertex thus
preserving the exact short ranged correlation (on the small

3
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cluster) and approximating the intermediate ranged ones (on
the large cluster):

	(K2, K ′
2, Q2; iωn, iω′

n, iν) → 	(K1, K ′
1, Q1; iωn, iω′

n, iν)

(8)
where momenta labeled with subscript 1 are cluster momenta
on the small cluster, while the subscript 2 denotes large cluster
momenta. The approximated self-energy on the large cluster
is evaluated from the Dyson equation depicted in figure 3.
It preserves all short ranged correlations and includes long
wavelength contributions which emerge from the inclusion of
large cluster corrections through the bare bubble χ0, i.e. the
reducible part of the vertex. However, by implementing the
DCA on a two-particle irreducible level (i.e. replacing the large
cluster irreducible vertex with the small cluster equivalent), the
resulting self-energy is inherently different from the single-
particle DCA self-energy that one would obtain from the
usual, direct DCA/QMC simulation of the large cluster (see
section 2.1). Only in the case of infinite dimensions, where
the problem becomes purely local, are these two approaches
equivalent.

A few remarks about the above approximation are in
order. The approximation in equation (8) breaks the crossing
symmetry of F (as it is related to 	 by equation (7)), since
F now contains long ranged corrections beyond the linear
extent of the small cluster only in the channel in which it
is calculated. Hence, the self-energy contributions have to
be evaluated in all three depicted channels (see figure 3).
Furthermore, this MSMB approach requires a full knowledge
of the momentum and frequency exchange on the cluster,
and hence the evaluation of 	 on the small cluster still
involves extensive numerical calculations and is limited by
storage/memory requirements (see section 6 for details).

This difficulty of obtaining the small cluster irreducible
vertex, 	, necessitates a further long ranged approximation
for 	. In [14] Abrikosov et al have, in their study of Fermi
liquid theory, identified a sub-class of self-energy diagrams
which convey the long length-scale properties of a system.
These are constructed from irreducible vertex functions with
zero external momentum and frequency transfer. In applying
this restriction we expect to capture long ranged correlations
which are characterized by small momentum transfers q . The
resulting long wavelength approximated irreducible vertex,
denoted by the index λ, is given by

	(K1, K ′
1, Q1; iωn, iω′

n, iνn)

→ 	λ(K1, K ′
1, Q1 = 0; iωn, iω′

n, iνn = 0). (9)

The MSMB approximation at the level of the irreducible
vertex is expected to provide the best description for the most
dominant two-particle processes. Furthermore, any phase
transitions would manifest themselves in instabilities of the
reducible vertex which contains the singular structure while the
irreducible vertex would remain analytic throughout. However,
the MSMB result is expected to remain most valid away from
phase transitions where intermediate ranged correlations are
weak. When these correlations are not weak, a diagrammatic
approximation of the self-energy may contain significant
errors, but such an approach can nonetheless represent non-
trivial aspects of strong correlations such as non-Fermi liquid

behavior [15, 16]. Further details on the calculation of the λ

self-energy are provided in section 3.
The self-energy obtained in this λ-approximation only

correctly accounts for long ranged fluctuations of the system.
The remaining short length-scale contributions have been
neglected and have to be accounted for separately, as will be
discussed in a subsequent section 2.4.

2.3. A conserving approximation

There are currently two widely used approaches which are
sufficient to show that an approximation is conserving. For
one, Baym (see [11]) has shown that, with local conservation
of spin, charge, momentum and energy at each vertex, it
is sufficient for the irreducible vertex to be a functional
derivative of the large cluster self-energy 	(G(K , ω), U) =
δ�(G(k, ω), U)/δG(k, ω). However, within both the DMFT
and DCA momentum conservation is partially violated at each
of the internal vertices as described by their respective Laue
functions (equation (2)). This violates certain Ward identities,
and hence neither the DMFT nor the DCA constitutes a
conserving approximation (see [12] for details).

In an alternative approach, following the arguments of
Baym and Kadanoff [13], an approximation can also be shown
to be conserving as long as it fulfills both the requirements
of (1) the inversion symmetries of F to be preserved and (2)
that the two-particle correlation function tends to the single-
particle Green’s functions via the Dyson equation. It is
straightforward to show that the approximation for the self-
energy on the large cluster satisfies these requirements. Thus,
the MSMB formalism based on the explicit small cluster vertex
(equation (8) only) constitutes a conserving approximation for
the large cluster as it restores momentum dependence of the
large cluster self-energy.

With the introduction of the λ-approximation (equa-
tion (9)) short ranged correlations are neglected and have to
be supplemented as discussed in the subsequent section. The
resulting self-energy breaks the conservation laws with correc-
tions of order 1/L(2)

c (where L(2)
c is the linear size of the larger

cluster). It should be reiterated, however, that the need for the
second (long wavelength) approximation is only temporary un-
til the hurdle of large memory requirements can be met.

2.4. Ansatz

To account for the omitted set of short length-scale self-
energy diagrams in the λ-approximation, we substitute
appropriate diagrams from the small cluster QMC result. This
diagrammatic substitution between the different length-scales
in the MSMB method is done by means of an analytic ansatz.

One possible implementation of the MSMB method which
yields a self-energy containing correlations on both long and
short length-scales is given by the real-space ansatz:

�(N (2)
c )(xi , x j)

=

⎧
⎪⎪⎨

⎪⎪⎩

�
(N (1)

c )

QMC (xi − x j), |xi − x j | � N (1)
c
2

�
(N (2)

c )

λ (xi − x j),
N (1)

c
2 < |xi − x j | � N (2)

c
2

0, otherwise.

(10)
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In this formalism, the MSMB self-energy is constructed by
taking all contributions of lengths up to the linear sizes of
the small cluster (N (1)

c /2) from the exact QMC result and the
remaining longer ranged contributions are complemented by
the λ-approximated large cluster self-energy. Note, the multi-
scale self-energy obtained in equation (10) has lost its spatial
continuity. Fourier-transforming the individual length-scale
contributions in equation (10) yields

�(N (2)
c )(K2, iωn) = �

(N (1)
c )

QMC (x = 0, iωn)

+
∑

i=1,
N(1)

c
2

2 cos(i K2)�
(N (1)

c )

QMC (x = i, iωn)

+
∑

j= N(1)
c
2 +1,

N(2)
c
2

2 cos( j K2)�
(N (2)

c )

λ (x = j, iωn) (11)

where only diagonal parts of the Fourier transformed self-
energy are considered.

Hague et al in [3] considered the following, alternative
momentum-space ansatz to combine the different length-
scales:

�(N (1)
c )(K1, iωn) = �

(N (1)
c )

QMC (K1, iωn)

− �
(N (1)

c )

λ (K1, iωn) + �̄
(N (2)

c )

λ (K1, iωn) (12)

�(N (2)
c )(K2, iωn) = �

(N (2)
c )

λ (K2, iωn)

+ �̄
(N (1)

c )

QMC (K2, iωn) − �̄
(N (1)

c )

λ (K2, iωn) (13)

where �
(N (1)

c )

λ is the self-energy obtained in the λ-
approximation when implemented on the small cluster. The
self-energies �(N (1)

c ) and �(N (2)
c ) on the small and large cluster,

respectively, exist on different grid sizes, and it becomes
necessary to convert self-energies from one to the other. This
conversion is denoted by a bar over the self-energy which
denotes an interpolation when going from a coarser grid to a
finer one and a coarse graining step otherwise. For example,
the large cluster self-energy �(N (2)

c ) is constructed from the
explicit λ-approximated self-energy on the large cluster, and
two interpolated small cluster (denoted by the superscript

(N (1)
c )) self-energies �̄

(N (1)
c )

QMC and �̄
(N (1)

c )

λ . It is important to note
that the coarse graining in going from large to small cluster
self-energies is not an averaging over electron propagators but
the term is used in this context to imply an averaging of the
self-energy within a cluster-cell.

While the real-space implementation of the ansatz
was a straightforward combination of different length-scale
elements, the momentum implementation interpretation is
more involved. The λ-method provides an estimate for the
set of self-energy diagrams which convey the long ranged
correlations of the system. However, since in reciprocal
space there is not an explicit separation of length-scales, the
remaining short length-scale diagrams which are to be supplied
by the QMC calculation have to be identified. This can be
accomplished by removing the sub-set of λ-approximated self-
energy diagrams on the small cluster from the complete set of
the QMC calculation, hence avoiding a double counting of the
corresponding self-energy contributions.

Within the traditional form of the DCA, all self-energies
are inherently causal for each individual cluster. One

Figure 5. Flow chart for the ansatz self-consistent implementation of
the MSMB/DCA.

consequence of causality is that − 1
π

Im �(k, ω) > 0. In this
ansatz based implementation of the MSMB method, however,
causality is not inherently guaranteed. The combination of
self-energy contributions of various length-scales in the ansatz
is only ensured to yield a causal multi-scale self-energy in the
limit of the cluster sizes approaching one another. Therefore,
causality in these schemes cannot be guaranteed and hence
has to be monitored closely throughout. For a more detailed
discussion of this and the entire momentum-space ansatz
see [3].

The remaining self-consistent implementation of the
multi-scale method (i.e. two cluster DCA) is similar to that
of the traditional, single cluster DCA. Figure 5 depicts a flow
chart of the implementation of both ansätze in the scheme
of the overall self-consistency loop. The bottom loop shows
the already discussed DCA self-consistency loop using the
QMC as a small cluster solver. For the large cluster solver
(λ-method) the self-consistency is similar. In the overall
scheme of the ansatz, the two cluster problems are combined
in a fully self-consistent approach: after each iteration of
the QMC/DCA loop, the corresponding λ/DCA contribution
on the large cluster is evaluated. The ansatz is used after
each step to calculate new estimates for the self-energies on
both the small and large cluster, thus yielding a fully self-
consistent solution. The corresponding paths are shown in
figure 5. The converged ansatz self-energy will be dominated
by the small cluster QMC self-energy which contributes the
strongest, short ranged correlations. The remaining weaker
long ranged correlations are incorporated in the difference of
λ-approximated self-energies between the two clusters. In
moving away from a fully self-consistent approach, the self-
consistency restrictions may be lessened to various degrees.
Some possible implementations will be discussed in further
detail in section 4.

3. Approximations to the vertex

In this section we provide the remaining details of the λ-
approximation. Previous studies, as well as our own results,
have shown that in the positive U Hubbard model the long
ranged contributions to the self-energy are dominated by the
spin and charge fluctuations of the system. In contrast,
pairing fluctuations are less significant and do not change the
qualitative multi-scale results, unless very low temperatures

5
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are considered. The self-energy determination in the results
section for the lowest order in U approximation to 	λ considers
all three channels. However, the remaining higher order
cases are restricted to only the self-energy contribution of
the particle–hole channel. An equivalent derivation to the
following can be trivially extended to the particle–particle
channel.

Starting with the λ-approximation introduced in sec-
tion 2.2 (equations (8) and (9)), the Bethe–Salpeter equation
(equation (7)) for the approximated large cluster reducible ver-
tex function can be coarse grained to the small cluster (see sec-
tion 6 for further details):

F̄λ(K1, K ′
1, Q2; iωn, iω′

n, iν) = 	λ(K1, K ′
1; iωn, iω′

n)

+ 	λ(K1, K ′′
1 ; iωn, iω′′

n)χ̄
0(K ′′

1 , Q2; iωn, iν)

× F̄λ(K ′′
1 , K ′

1, Q2; iω′′
n, iω′

n, iν) (14)

where we coarse grained the bare particle–hole susceptibility
bubble (internal legs in figure 4 which are lattice Green’s
functions). We call this coarse grained susceptibility χ̄0

χ̄0(K ′′
1 , Q2; iωn, iν) = − T Nc

N

∑

k̃′′ ,iωn

G(K ′′
1 + k̃ ′′, iω′′

n)

× G(K ′′
1 + k̃ ′′ + Q2, iω′′

n + iν). (15)

Furthermore, while the coarse graining (sum over internal
moment k̃ ′′) is to the small cluster, the self-energy in G
originates from the large cluster. The resulting reducible vertex
function F̄λ, however, is still only defined for small cluster
momenta but incorporates large cluster corrections from the
coarse grained susceptibility χ̄0. Due to these long ranged
contributions, the reducible vertex constructed in this manner
is not equivalent to a QMC evaluated small cluster F .

The resulting Bethe–Salpeter equation (14) is most easily
solved for F̄λ in the following matrix form:

F̄ (λ)−1(Q2, iν) = 	(λ)−1 − χ̄0(Q2, iν) (16)

where the matrix indices correspond to the internal momenta
and frequency.

At this point, the self-energies can now finally be
evaluated using the Dyson equation as illustrated in figure 3.
On the large cluster this yields

�
(N (2)

c )

λ (K2, iωn)

= U T 2

N (1)
c N (2)

c

∑

K ′
1,Q2,iω′

n ,iν

G(K2 + Q2, iωn + iν)

× χ̄0(K ′
1, Q2; iω′

n, iν)

× (F̄λ+−(K ′
1, M(K2), Q2; iω′

n, iωn, iν)

− F̄λ↑↓(K ′
1, M(K2), Q2; iω′

n, iωn, iν) − U). (17)

Here we interpolate the small cluster momentum M(K2) →
K2 (for details see section 6) and subtract U in the parenthesis
to prevent over counting of the second order term.

In the calculation of the transverse spin fluctuation part
recall that 2χ± = χ zz , where we define χ± as the correlation
function of σ+ and σ−, and χ zz as the correlation function
formed from σ z . Then as χ zz = 2(χ↑↑ − χ↓↑), we have that

χ± = χ↑↑ − χ↓↑ and F± = F↑↑ − F↓↑. This means that for
the self-energy on the large cluster

�
(N (2)

c )

λ (K2, iωn)

= − U T 2

N (1)
c N (2)

c

∑

K ′
1,Q2,iω′

n ,iν

G(K2 + Q2, iωn + iν)

× (2F̄λ↑↓(K ′
1, M(K2), Q2; iω′

n, iωn, iν) + U)

× χ̄0(K ′
1, Q2; iω′

n, iν). (18)

While for the real-space implementation of the ansatz,
knowledge of the large cluster self-energy in the λ-
approximation is sufficient, the momentum-space version
requires the corresponding self-energy diagrams on the small
cluster as well. An equivalent calculation on the small cluster
yields for the self-energy in the λ-approximation

�
(N (1)

c )

λ (K1, iωn)

= − U T 2

N (1)
c

2

∑

K ′
1,Q1,iω′

n ,iν

Gc(K1 + Q1, iωn + iν)

× (2Fλ↑↓
c (K ′

1, K1, Q1; iω′
n, iωn, iν) + U)

× χ0
c (K ′

1, Q1; iω′
n, iν) (19)

where all single-particle propagators have been replaced by Gc,
including the ones entering the bare bubble χ0.

We want to reiterate that the λ-approximated self-energy
thus obtained is only accurate for long ranged correlations. In
order to obtain a viable multi-scale solution, the neglected short
ranged correlations have to be accounted for by means of the
ansatz, as outlined in section 2.

3.1. First order in U

The introduced non-perturbative MSMB method requires a
detailed knowledge of the small (QMC) cluster irreducible
vertex. This evaluation of 	, however, poses a difficult
and numerically involved problem. We shall therefore
initially only consider perturbative approximations to the
vertex within the MSMB method. In approximating the
irreducible vertex by the frequency independent first order
contribution, i.e. 	(K , K ′; iωn, iω′

n) = U , the self-energy
diagrams of figure 3 reduce to the well known FLEX [17–19]
diagrams. In the particle–hole channel, the corresponding self-
energy is given by

�(ph)(k, ωn) = U T

N

∑

q

∑

m

V (ph)(q, ωm)G(k − q, ωn − ωm).

(20)
The FLEX potential is defined by

V (ph) = χ0
ph(q, ωn) − 1

2

χ0 2
ph (q, ωn)

1 + χ0
ph(q, ωn)

+ 3

2

χ0 2
ph (q, ωn)

1 − χ0
ph(q, ωn)

(21)

where

χ0
ph(q, ωn) = − T

N

∑

k

∑

ω

G(k, ωm)G(k+q, ωm+ωn). (22)
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Figure 6. Second order diagrams for the vertex functions 	2
↑↑ (a) and

	2
↑↓ (b) for an external momentum transfer q = 0.

Using the FLEX to address the long length-scale problem
within a multi-scale method was the scope of the work by
Hague [3]. Initially we will return to this simple cluster
solver which is known to provide qualitatively correct long
length-scale properties. We will use the FLEX to illustrate
some of the properties and problems associated with the
ansatz in momentum-space (see equations (12) and (13)).
After exploring some of the limitations encountered, we will
introduce variations of the original implementation which
expand the scope of applicability of the FLEX within the
MSMB scheme.

3.2. Second order in U

At lower temperature, or for larger U , higher order terms in
the vertex are important. The second order corrections to the
irreducible vertex function in the λ-approximation (i.e. zero
external momentum transfer q = 0 and frequency νn = 0)
are shown in figure 6. The irreducible vertex is given in the
spin channel by

	(λ)s(iωn, iωn′ ; K1, K ′
1) = −U − U 2T

N (1)
c

∑

iωn′′ ,K ′′
1

G(iωn′′, K ′′
1 )

× G(iωn + iωn′ − iωn′′ , K1 + K ′
1 − K ′′

1 ) (23)

and in the charge channel

	(λ)c(iωn, iωn′ ; K1, K ′
1) = +U + U 2T

N (1)
c

∑

iωn′′ ,K ′′
1

G(iωn′′, K ′′
1 )

× (G(iωn + iωn′ − iωn′′ , K1 + K ′
1 − K ′′

1 )

+ 2G(iωn − iωn′ + iωn′′, K1 − K ′
1 + K ′′

1 )). (24)

3.3. Full QMC vertex

In the non-perturbative MSMB approach the full irreducible
vertex, as obtained by the QMC, is considered. Within the

QMC algorithm we are unable to determine 	 directly and
instead calculate the two-particle correlation function χ . The
irreducible vertex function can be found by inverting the
Bethe–Salpeter equation. In the spin channel we have the two-
particle correlation function

χ s = χ0 + χ0	sχ s (25)

which is a matrix with elements both in frequency and
momentum (the same holds for the charge channel). The
irreducible spin vertex is denoted by 	s and χ0 is the bare
spin susceptibility. The correlation functions are evaluated in
the QMC by sampling over the configuration space (Hirsch–
Hubbard–Stratonovich fields [2]) in one of two ways, each one
posing its own challenges.

One possibility is directly evaluating χ(iωn, k; iωn′, k ′) in
frequency space. This requires the individual QMC Green’s
function to be Fourier transformed (FT) from the time domain.
However, since the calculation is limited to finite time intervals
�τ the FT will incur substantial high-frequency artifacts. In
theory this can be improved by means of a high-frequency
conditioning, but no analytic form is available within the QMC
calculation to facilitate such a conditioning. The resulting
substantial artifacts are propagated into the irreducible vertex
function.

Alternatively χ can be evaluated in the time domain and
only Fourier transformed once the QMC averaging is complete.
This results in an accurate measurement of the two-particle
correlation function by the QMC but is significantly more
computationally expensive. Although this approach provides
an accurate measure for χ(τ1, τ2; τ3, τ4), the Bethe–Salpeter
equation cannot be used to solve for 	 in the time domain
and hence the QMC averaged χ has to be Fourier transformed
first. This once again results in similar problems associated
with the FT. In the high temperature regime where higher order
corrections in U are not important a perturbative approach
to high-frequency conditioning of the FT is very successful.
However, as the temperature is lowered and the significance
of higher order corrections within the vertex grows, this
conditioning results in even larger artifacts. Therefore we use
the frequency domain in our determination of χ .

4. Technical aspects

A MSMB approach based on a first order approximated
vertex is similar to the limited FLEX-hybrid approach
previously considered by Hague et al [3]. In their work the
intermediate length-regime was addressed using FLEX which
was incorporated within a multi-scale approach using the fully
self-consistent momentum-space ansatz (see equations (12)
and (13)). However, in the regime of stronger couplings and/or
lower temperatures, where a significant contribution of longer
ranged correlations is to be expected, the method fails. In
this section we propose changes to the implementation of the
multi-scale method which significantly improves its range of
applicability by (1) restriction of the ansatz to the large cluster,
(2) modification of the cluster conversion, and (3) removal
of the self-consist implementation of the ansatz on the large
cluster.

7
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Figure 7. Imaginary part of the self-energy at the lowest Matsubara
frequency as obtained by various cluster solvers and the
FLEX/MSMB method at β = 8, U = W = 1.0, and n = 0.75. The
MSMB cluster sizes are N (1)

c = 8 and N (2)
c = 32.

In the original inception [3], the ansatz is evaluated fully
self-consistently within both the QMC and the FLEX as
discussed in section 2.4. The self-energy contributions of these
two clusters solvers are linked by the momentum-space ansatz.
However, long ranged correlations, as are described by the
large cluster FLEX, are assumed weak. Hence, their presence
in the effective medium of the small cluster only minutely
effects the QMC self-energy. We thus neglect the ansatz on
the small cluster (equation (12)). With this modification, the
small cluster problem can be solved independently of the large
cluster problem. This results in a significant reduction in
numerical complexity.

With the removal of the small cluster ansatz condition,
only a unidirectional cluster conversion of small cluster self-
energies to the large cluster remains. In this work, a periodic
cubic spline interpolation4 is employed. This provides a
good approximation for the multi-scale self-energy in the high
temperature/small U limit. Figure 7 shows the imaginary part
of the exact, QMC calculated and FLEX self-energies on both
clusters calculated at high T . In this regime, correlations are
short ranged in nature and thus well described by the small
cluster itself, while the remaining long ranged features, which
are provided by the large cluster FLEX, are insignificant. The
interpolated small cluster self-energy accurately replicates that
of the explicit large single cluster QMC result. This results in
a vanishing FLEX contribution within the ansatz as the large
and interpolated small cluster FLEX results are identical and
thus cancel each other out (see the superimposed, lower set of
curves in figure 7).

In this high temperature regime (e.g. figure 7) the fully
self-consistent ansatz as well as our modified one remain
numerically stable. However, one inherent limitation of the
approach is already apparent. The observed magnitude of the
negative imaginary part of the QMC self-energy is significantly

4 We omit the additional coarse graining of the self-energy in the original
work. This is deemed appropriate since the interpolated small cluster self-
energy won’t recoup the lattice self-energy and hence a coarse graining to a
cluster is meritless.

Figure 8. Flow chart depicting two independent self-consistent DCA
calculations combined via an ansatz to construct a MSMB
self-energy.

smaller than the FLEX result. This overestimation of the self-
energy by the FLEX deems a first order approximation to the
vertex to be insufficient. A self-consistent implementation of
the ansatz aggregates the problem, as the ansatz self-energy
used to initialize each FLEX iteration is similar in magnitude
to the QMC self-energy. This results in an insufficient damping
of the FLEX potentials and the subsequent overestimation of
the FLEX self-energy renders the large cluster self-energy
calculation numerically unstable. This is an inherent problem
in the self-consistent approach. In an attempt to enhance the
numerical stability of the MSMB method we remove the self-
consistent implementation of the ansatz on the large cluster.
This leaves two independent DCA calculations for the small
and large cluster which, after the individual problems are
converged, are combined by the ansatz. The resulting self-
consistency scheme is depicted in figure 8. However, the
effective media embedding the two cluster problems now are
unaware of correlations determined by the other cluster solver
technique. Therefore, the effective medium of the large cluster
now lacks the explicit short ranged correlations provided by the
QMC. Similarly, the effective medium of the small cluster only
contains long ranged correlations provided by the dynamical
mean-field approximation.

The third modification enters in the determination of the
small cluster FLEX self-energy �

(N (1)
c )

FLEX . Rather than calculating
it explicitly, we obtain it by coarse graining the large cluster
self-energy onto the small cluster. The combination of all
changes introduced up to this point significantly increases
the range of low temperatures which can be addressed by a
perturbative MSMB approach.

Throughout the remainder of the paper we will restrict
ourselves to the non-self-consistent momentum-space ansatz as
outlined in this section. It indeed succeeds in addressing some
of the problems encountered in the original implementation
and yields a numerically stable MSMB method.

5. Results

Throughout the remainder of the paper, we evaluate the quality
of the MSMB method by comparing the self-energy to that of
a 32-site, single cluster DCA/QMC calculation.

5.1. First order in U

We begin the evaluation of the MSMB method by considering
the first order approximation to the irreducible vertex. The
previous section introduced a numerically stable approach

8
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Figure 9. Imaginary part of the self-energy at the lowest Matsubara
frequency as obtained by the MSMB method using first order
(FLEX) and second order approximated irreducible vertices 	 in
comparison to the large single cluster QMC results at β = 31,
U = W = 1.0, and n = 0.75. Multi-scale results are for cluster sizes
N (1)

c = 8 and N (2)
c = 32.

to the perturbative MSMB method. This allows for the
FLEX based MSMB treatment of stronger coupling/lower
temperature regimes.

The major limitation of this method, however, remains
in the still significant difference in magnitude of the QMC
and FLEX self-energies leading to an overestimation of long
length-scale features introduced by FLEX. In figure 9 it is
quite apparent that at lower temperatures the FLEX MSMB
implementation overestimates the size of the long length-scale
features, i.e. the amplitude of the oscillations in the imaginary
part of the self-energy. This is yet further indication that a
bare approximation to the vertex is inadequate to address the
intermediate length-regime.

5.2. Second order in U

We move to include second order corrections in the vertex,
which is expected to mitigate the effects of the underestimation
to the vertex in the FLEX. This lessens the difference in
magnitude between the QMC and λ self-energy within the
ansatz (as observed in figure 7) and thus increases the
applicability of the MSMB method to lower temperatures.

Figure 9 compares the imaginary part of the self-energy
at the lowest Matsubara frequency for various degrees of
approximation. In contrast to the gross overestimation of the
first order approximation to 	, the inclusion of second order in
U corrections within the MSMB method successfully captures
the long length-scale features of the large single cluster QMC
self-energy throughout most of the BZ. The largest deviations
in the multi-scale self-energy are found about the corners of
the BZ, i.e. k = ±π . Within the ansatz, the difference
between the small and large cluster λ self-energies provides
the long length-scale features, thus partially restoring the self-
energy information which was lost by coarse graining to the
small QMC cluster. However, using a λ self-energy with a
negative imaginary part which is considerably larger than that
of the small cluster QMC results in an overestimation of this

Figure 10. Imaginary part of the λ-approximated self-energy at the
lowest Matsubara frequency for the large cluster (N (2)

c = 32) using
various cluster solvers in comparison to the single cluster QMC
result at β = 31, U = W = 1.0, and n = 0.75. Also shown is the
overestimated ansatz self-consistent self-energy of the MSMB
method for the second order approximated 	.

correction, predominately in regions encompassed by steep
gradients in the self-energy.

Figure 10 further illustrates the pathology of the ansatz
associated with the difference in magnitude of the cluster self-
energies. We show the imaginary part of the self-energy as
obtained by the various λ-approximations on the large cluster
in comparison to the large single cluster QMC result. The
magnitude of the negative imaginary part of the self-consistent
FLEX (first order in U approximation) self-energy is, as was
previously indicated, very large compared to the magnitude of
the QMC result. The new approach of including second order
corrections in U in the vertex function, succeeds in yielding
a self-energy which resembles that of the QMC more closely.
Similarly to the numeric instability encountered with the FLEX
approximation, the self-consistent determination of the λ self-
energy using the large cluster ansatz also yields a larger self-
energy but does not encounter the catastrophic divergence of
the FLEX. We find that a second order 	 combined with a non-
self-consistent ansatz provides the best multi-scale solution to
the problem.

Now that we have established the viability of the MSMB
technique we take a closer look at the dependence of the small
cluster size on the quality of the multi-scale result. Within the
MSMB method the QMC constitutes the computationally most
expensive part. Hence, we want to restrict the calculations
to the smallest possible QMC cluster (N (1)

c ) without any
significant loss of quality in the multi-scale results. It is
therefore important to study the dependence of the multi-scale
results on the size of the small cluster.

Figure 11 shows the multi-scale self-energy for a variety of
small cluster sizes as obtained by the MSMB method using the
second order approximation to the λ vertex. It is apparent that
a cluster size of N (1)

c = 4 is too small to adequately capture
the main k dependence (overall magnitude) of the QMC’s
self-energy. Considering such a small QMC cluster grossly
misrepresents the range of the QMC self-energy and is not
recovered in the MSMB method. This is an indication that

9



J. Phys.: Condens. Matter 21 (2009) 435604 C Slezak et al

Figure 11. Imaginary part of the self-energy at the lowest Matsubara
frequency as obtained by the MSMB approach using the second
order λ-approximation and large single cluster QMC. Results are for
various small cluster sizes N (1)

c at β = 31, U = W = 1.0, and
n = 0.75.

correlations beyond the length-scales of the small cluster are
still significant and not sufficiently well approximated by the
λ-method. A small cluster size of N (1)

c = 8, on the other hand,
appears adequate and only slightly underestimates the self-
energy in the vicinity of k = ±π . In this area we continually
observe significant remnants of the coarse graining of the QMC
which is inadequately restored by the MSMB method.

Up to this point we have focused our investigation on the
momentum dependence of the self-energy at small Matsubara
frequency. Since the visual representation of the self-energy
features at multiple, larger Matsubara frequencies would be
cumbersome, we proceed to further illustrate the strengths of
this MSMB technique by focusing on the presence of spin–
charge separation in the system which is manifest in the full
frequency dependent self-energy.

One-dimensional systems have been shown to be non-
Fermi liquids. Amongst other unique features, they are known
to exhibit spin–charge separation [20–22]. This very intriguing
property manifests itself by the complete decoupling of spin
and charge degrees of freedom. The single-particle spectra
of such systems exhibit two unique peaks corresponding to
either spin or charge excitations which move independently of
each other. Due to the involved nature of extracting spectra
from the MSMB method, we are at this time unable to directly
identify the presence of any such feature in our results. One
characteristic of such a separation, however, is the presence
of two distinct velocities corresponding to charge and spin,
respectively. Following an approach by Zacher [23], we
examine the MSMB Matsubara frequency Green’s function
for the possible presence of spin–charge separation. This is
done by fitting the Green’s function obtained from the MSMB
method to that of the Luttinger model solution

G(LM)
v1,v2,κρ

(x, τ )

= eikF xc√
v1τ + ix

√
v2τ + ix(x2 + v2

2τ
2)−(κρ+1/κρ−2)/8

, (26)

where v1 and v2 are the spin and charge velocities and c is
a normalization constant. We use the approximation for the

Figure 12. Spin and charge velocities (v1 and v2, respectively)
obtained by fitting the different results with the Luttinger Green’s
functions (equation (26)) about cluster momentum k = π/2 for
β = 31, U = W = 1.0 and n = 0.75. Multi-scale results are for a
small cluster size N (1)

c = 8 and different large cluster sizes, and the
QMC velocities were obtained from a single 32-site cluster
calculation.

correlation exponent κρ = 1 which is deemed sufficient by
Zacher for the purposes of identifying the presence of two
different velocities. In order to accurately perform a fit with our
data we need to additionally coarse grain (see equation (5)) the
Luttinger liquid Green’s function to obtain a fitting function in
line with the idea of the DCA. This fit yields values for both the
spin and charge velocities when fitted at k = π/2, which is the
DCA momentum closest to the Fermi wavevector. This specific
choice of k value is motivated by the fact that the Luttinger
model solution is based on a low energy approximation of the
Hubbard model where a linearized dispersion around the Fermi
vector is assumed. For the parameters in figure 12 the Fermi
wavevector (kF ≈ 1.2) falls into the cluster-cell about k = π/2.

Figure 12 shows the spin and charge velocities (v1 and v2,
respectively) obtained by using the single cluster QMC results
for smaller cluster sizes and multi-scale results for larger ones.
For intermediate cluster sizes, where both the QMC and the
MSMB method are feasible, we see a good match between the
two methods. For larger cluster sizes where the QMC approach
becomes unfeasible the multi-scale results fall close to the
QMC extrapolated values. Furthermore, as we extrapolate the
multi-scale results to the infinite cluster size limit we find two
different velocities: v1 = 0.311 and v2 = 0.674. These
values compare rather well to those obtained by Zacher et al’s
[23] grand-canonical QMC calculation for a cluster size of 64,
β = 80 and all other parameters equal to ours: v1 = 0.293 ±
0.019 and v2 = 0.513 ± 0.023. Although the temperature in
figure 12 is slightly higher than that of Zacher’s results, we
observed only a small temperature dependence of the fitted
velocities in our calculations. The similarity between the two
results are quite remarkable considering that our calculations
were based on a substantially smaller eight-site QMC cluster
and hence less subject to the sign problem5. These are yet

5 The DCA inherently has a lesser sign problem within the QMC compared
to finite size approaches [2] and in the combination with a smaller cluster size
results in a significantly larger average sign.
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Figure 13. Imaginary part of the self-energy at the lowest Matsubara
frequency as obtained by the MSMB method using second order
approximated and full QMC evaluated 	s in comparison to large
single cluster QMC results at β = 31, U = 3

2 W = 1.5 and n = 0.75.
Multi-scale results are for cluster sizes N (1)

c = 8 and N (2)
c = 32.

further indications that the MSMB method indeed successfully
captures the long length-scale physics of the model and is in
good quantitative agreement with large single cluster QMC
calculations.

5.3. Full QMC vertex

The previous two sections initially considered a first order
approximated irreducible vertex function (i.e. the FLEX) and
then proceeded to show the significant improvement that can
be achieved by including second order corrections to 	 within
the MSMB method. Both of these perturbative approaches,
however, resulted in an overestimation of the long length-scale
features of the self-energy at low temperatures. We now return
to the non-perturbative λ-approximation using the irreducible
QMC vertex. This approximation is expected to significantly
improve the results, especially at lower temperatures where
higher order corrections to the bare vertex are important and
measurably contribute to the self-energy.

Figure 13 compares the imaginary part of the multi-scale
self-energies, obtained by considering both the second order
vertex and the full QMC vertex, to the numerically exact large
single cluster QMC self-energy. While the resulting multi-
scale self-energy utilizing the full vertex function gives a better
approximation for some momenta, the second order vertex
solution remains preferable for others. This behavior may
be somewhat unexpected since the inclusion of higher order
corrections in the vertex was expected to further improve the
overall quality of the multi-scale solution. However, we believe
that this discrepancy arises from difficulties in extracting
the exact vertex related to problems with high-frequency
conditioning in the QMC and is not an intrinsic problem of the
method. As a consequence, the consideration of second order
corrections in the λ-approximation remains the most useful at
this time. It successfully allows for the exploration of lower
temperatures—a regime where the reducible vertex function
develops a richness in features.

Figure 14. Imaginary part of the self-energy at the lowest Matsubara
frequency as obtained by the MSMB method using the second order
approximated 	 in conjunction with the real-space and
momentum-space based ansatz at β = 31, U = W = 1.0 and
n = 0.75. Also shown is the large single cluster QMC result.
Multi-scale results are for cluster sizes N (1)

c = 8 and N (2)
c = 32.

5.4. Real-space ansatz

Up to this point, the various approximations to the irreducible
vertex function within the MSMB technique were implemented
using the momentum-space ansatz. We now return to the
previously introduced implementation of the real-space ansatz
(see equation (11)). The significant difference is that the
separation of length-scales in the real-space approach is
straightforward, and therefore over counting of diagrams is
not an issue. The second order vertex approach was shown
to be widely successful and will hence be used to investigate
this ansatz implementation as well. It should be noted that
both versions of the ansatz are treated identically as far
as the implementation of self-consistency is concerned (see
section 5.1).

Figure 14 compares the multi-scale self-energy of the
two ansatz implementations to the large single cluster QMC
result. It is quite apparent that the real-space implementation
of the MSMB method is inferior. The momentum-space ansatz
provides a self-energy more closely resembling the exact result
throughout the BZ.

The real-space ansatz provides an intuitive and simple
way to combine the different length-scales of the problem in
contrast to a more complicated implementation in momentum-
space. Although inferior, the real-space ansatz remains a
viable, numerically stable alternative. It furthermore provides
an alternative means of interpolating the small cluster self-
energy by neglecting the large cluster self-energy contributions
in equation (11), which were found to be negligible in this
approach. The resulting interpolated small cluster QMC self-
energy (not shown) closely resembles that of the real-space
ansatz based MSMB method.

6. Numerical considerations and outlook

In the development of this MSMB method we were forced to
employ various approximations due to current computational
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Figure 15. The Parquet equation relating the transverse particle–hole
irreducible vertex 	

p−h
trans to the fully irreducible vertex � plus

contributions from the longitudinal and particle–particle cross
channels. Similar relations apply for the remaining channels (not
shown).

limitations. The largest numerical concession was made in
section 3, where we restricted the calculations of Fλ to the
small cluster (see equation (14)). Ideally, the irreducible
vertices 	 would be interpolated and the full reducible vertex
evaluated on the large cluster in turn. This calculation,
however, would scale as (N (2)

c Nl )
4 (Nl is the number of time-

slices in the QMC [2]) and hence provide little advantage over
a single cluster QMC calculation. We therefore restrict the
evaluation of F̄λχ̄0 in equation (18) to the small cluster and
interpolate the product of χ0 and Fλ to the large cluster.

With the onset of peta-scale computing we will be able to
make two fundamental improvements to the MSMB approach
in the near future. Initially, we will gain the ability to
include the fully momentum and frequency dependent 	

in our calculation, thus eliminating the necessity of the λ-
approximation (equation (9)). Inherent in this modification is
an explicit account of the correct short ranged physics hence
removing the need for the ansatz. However, the memory
and CPU requirements for this type of calculation scale as
(N (1)

c Nl )
3. For a large cluster with Nc = 16 and Nl = 100,

this would require 66 GB of double precision complex storage,
far exceeding the memory associated with a single CPU.
These staggering memory requirements can currently only
be met by some shared-memory parallel processing (SMP)
supercomputers.

In the second improvement, the approximation of the large
cluster 	 by the small cluster QMC can be replaced by one
utilizing the fully irreducible vertex � (the vertex which is two-
particle irreducible in both the horizontal and vertical plane).
This results in a self-consistent renormalization of 	 via the
Parquet equations [17, 24], and hence an inclusion of long
ranged correlations in the crossing channel (see figure 15)
which are missing in both the λ-approximation and the 	-based
approximation described above.

The superiority of the latter approach becomes clear in the
high-dimensional limit, where it is �, not 	, which becomes
local. This can be shown by considering the simplest non-local
corrections to the respective vertices � and 	 in figure 16. The
boxes represent a set of graphs restricted to site i (local) and
j (neighboring), respectively. In the limit of high dimensions,
each site i has 2D adjacent sites j . The contributions of each
leg within the vertex in the limit D → ∞ is G(r) ∼ D−r/2 (for
details see [8]). This results in a contribution to the correction
of O(D−1) for the two legs in 	 and O(D−3/2) for �. Thus,

Figure 16. Lowest order non-local corrections to the fully
irreducible vertex � (left) and the vertex 	 (right).

the non-local corrections to � including all neighboring sites j
falls off as D−1/2 and becomes local in the infinite-dimensional
limit. In contrast, the corrections to 	 remain of order one.
Therefore, in the high-dimensional limit, � is local while 	 has
non-local corrections. In finite dimensions, we would expect
that � is more compact than 	 whenever the single-particle
Green function falls quickly with distance. Then � should
always be better approximated by a small cluster calculation
than 	. (Despite the fact that 	 has non-local corrections, one
can easily show that in the high-dimensional limit, all of the
methods discussed here will yield the same self-energy and
susceptibilities since the non-local corrections to 	 fall on a
set of zero measure points).

In employing the solution to the Parquet equation in
a MSMB method we would be able to resolve two major
limitations of the current approach: (1) an implementation
considering the full frequency and momentum dependent
vertex will be devoid of the causality problems associated
with the self-energy mixing of the two cluster sizes. (2)
The approach constitutes a conserving approximation for the
large cluster self-energy. Given these potential gains of a
future method, we have to stress the extensive computational
demands associated with this approach. While in a 	

based implementation a trivial numerical parallelization of the
problem leaves manageable demands, the complex nature of
the Parquet approach requires substantial future development.

7. Conclusion

We have introduced a numerically feasible MSMB extension
to the DCA. In this method the lattice problem is mapped
onto that of two embedded clusters, dividing the problem
into three length-scales. Correlations on each of the length-
scales are approximated commensurate with the strength of
the correlation on the respective scale. The intermediate
length-regime, which bridges the explicit treatment of short
ranged correlations by means of the QMC to the long ranged
dynamical mean-field one, is addressed in a diagrammatic
long wavelength approximation based on the two-particle
irreducible vertex of the small cluster. The first order
approximation to the vertex results in the FLEX but including
higher order corrections result in a substantial better multi-
scale result when compared to explicit large cluster QMC
calculations. This can be attributed to the significance of higher
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order diagrams at lower temperatures. We proceeded to show
that our MSMB results indicate spin and charge separation,
and the obtained velocities compare favorably to a significantly
larger finite size QMC calculation. The inclusion of the explicit
QMC calculated vertex is currently still limited, but further
work in this direction looks promising. However, in any of
the introduced implementations, the MSMB approach provides
a means to adequately address large cluster problems on all
length-scales at significantly lower computational expense.
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